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We present results from extensive Monte Carlo simulations of the fluid phase of 
the two-dimensional classical one-component plasma (OCP). The difficulties 
associated with the infinite range of the logarithmic Coulomb interaction are 
eliminated by confining the particles to the surface of a sphere. The results are 
compared to those obtained for a planar system with screened Coulomb 
interactions and periodic boundary conditions; in this case the infinite tail of the 
Coulomb interaction is treated as a perturbation. The "exact" simulation results 
are used to test various approximate theories, including a semiempirical modifi- 
cation of the hypernetted-chain (HNC) integral equation. The OCP freezing 
transition is located at a coupling F = e2/kB T ~  140. 

KEY WORDS: Two-dimensional classical one-component plasma; freez- 
ing transition; Monte Carlo simulation; modified hypernetted-chain integral 
equation. 

1. INTRODUCTION 

The one-component plasma (OCP) in d dimensions is a system of identical 
point particles carrying a charge e and interacting through the d- 
dimensional Coulomb potential; to ensure charge neutrality the particles 
are immersed in a uniform background of opposite charge. The Coulomb 
potential v(r) in d dimensions is the solution of Poisson's equation: 

Av(r) = - 2 d/2[ r(d/2)]-le2 (r) (1.1) 

where A denotes the d-dimensional Laplace operator. The OCP is the 
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simplest possible model of a continuous Coulomb fluid and is hence of 
considerable theoretical importance. The static and dynamic properties of 
the three-dimensional (3d) OCP have been thoroughly investigated in view 
of its relevance for the description of dense plasmas/1'2) The two- 
dimensional (2d) version has recently received much attention, and a 
number of exact and approximate theoretical results concerning the static 
structure and the thermodynamics of this model are by now available. In 
this paper we present extensive Monte Carlo results for these properties in 
order to provide a reliable test of approximate theoretical calculations and 
to allow a precise location of the fluid-solid transition for this model. 

In order to overcome the usual difficulties linked to the small size of 
the computer-simulated systems and the infinite range of the Coulomb 
potential, we have used two very different Monte Carlo schemes which lead 
to mutually compatible results and give us some confidence that the 
statistical averages which we quote are close to their thermodynamic limit. 
The paper is organized as follows. In Section 2 all relevant quantities are 
defined and the essential results previously known for the 2d OCP are 
briefly summarized. In Sections 3 and 4 we describe the two Monte Carlo 
schemes which we have used and compare the data which they yield. 
Section 5 is devoted to a critical examination of the "best" available 
theoretical scheme, the hypernetted chain (HNC) equation and its exten- 
sions. The fluid-solid transition is discussed in Section 6, while some 
concluding remarks are contained in Section 7. 

2. DEFINITIONS AND GENERAL PROPERTIES 

The solution of Eq. (1.1) in two dimensions is 

v ( r )  = - e 2 l n ( r / L )  (2.1) 

where L is an arbitrary scaling length. Let n = N ~  S be the number density, 
with N the total number of particles and S the area of the system. A 
convenient unit of length is the "ion-disk" radius: 

a = (~rn)-1/2 (2.2) 

and in the following it will be convenient to choose L = a, and to use 
reduced distances x = r / a .  If the N particles are confined to a disk of 
radius R uniformly filled by the neutralizing background, the total potential 
energy in a given configuration is the sum of particle-particle, particle- 
background and background-background contributions: 
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where r i is the position vector of particle i, as measured from the center of 
the disk, r i = ]ril and r O. = ]r i - rj[. An equilibrium state of the 2d OCP is 
entirely characterized by the single dimensionless coupling constant: 

F = e2/kB T (2.4) 

which is independent of density. 
If g(r) denotes the pair distribution function and h(r) = g(r) - 1 the 

pair correlation function, charge neutrality implies that 

2~rn fo~ h(r)r  dr= 2 f o ~ h ( x ) x d x =  - 1  (2.5) 

The virial equation combined with Eq. (2.5) immediately yields the equa- 
tion of state: (3) 

fl--~P - 1 fleE = 1-- F_ (2.6) 
n 4 4 

where fl = 1 / k  B T. This exact result is a simple consequence of the observa- 
tion that the density is an irrelevant variable for a system of particles 
interacting through the logarithmic potential (2.1). The excess internal 
energy U ex, on the other hand, is a nontrivial quantity which can be 
calculated from h(r) via the energy equation: 

UeX - ~rn fo~h(r ) ln (  r ) rdr  
u ( F ) -  Ne 2 --~ 

= - f o ~ h ( x ) l n ( x ) x  dx (2.7) 

The excess free energy F ex follows then by thermodynamic integration: 

F ex _ 1 lnQrnL 2) + f (F)  
Ne 2 4 

'] 
f ( r )  = ~ ,to j 

The isothermal compressibility, on the other hand, follows directly from the 
equation of state (2.6): 

aBP = r 
x T l =  On ]T 1 -- -~- (2.9) 

The static structure factor is defined, as usual, by 

S(k)  = 1 + h (k )  (2.10) 

where/~(k) denotes the dimensionless Fourier transform of the pair correla- 
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tion function: 

I~ (k) = n f h (r)exp ( ik .  r) a2r 

2~rn fo~176 ) dr = r (2.11) 

with Jo, the zeroth-order cylindrical Bessel function. Via the Ornstein- 
Zernike relation we introduce the direct correlation function, in k space, 

~(k) -- 1 - [ S ( k ) ] - '  (2.12) 

Since for small k (i.e., large r), ~(k) is expected to behave asymptotically as 

kg 
0 -  B (k) = k2 (2.13) 

with k D = l/}t D = (2~rflne2) 1/2 the inverse Debye length, it is convenient to 
separate ~(k) into its singular and regular parts: (I) 

d(k)  = - k~ + ~R(k ) (2.14) 
k 2 

The compressibility equation, as adapted to the OCP, reads (]) 

l im~R(k) = 1 - X f '  (2.15) 
k-+0 

It is easy to check that Eqs. (2.12)-(2.15) imply the following additional 
moment sum rules for the pair correlation function: 

2~rnfo~176 2aEfo~ - 4X  2 (2,16) 

2~rnfo~176 2a4foC*h(x)xSdx= - 64~4X77 ] (2.17) 

Equation (2.16) is also known as the "perfect screening" condition. 
In the weak coupling limit (F << 1), the static properties of the OCP 

reduce to their Debye-Htickel  (DH) approximation, which amounts to 
neglecting the regular part of the direct correlation function in Eq. (2.14). 
The resulting static structure factor takes then the familiar form 

k 2 
Son(k ) - k 2 + kZa (2.18) 

while the pair correlation function reads 

hDn(r) = -- VKo(r/Xo) (2.19) 

where K 0 denotes the zeroth-order modified Bessel function of the second 
kind. The D H  excess internal energy is then readily calculated from Eqs. 
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(2.7) and (2.19) with the result 0) 

UD.(r) = - ~ [ln(~ r) + 27 ] (2.20) 

where 7 = 0.57721 . . .  is Euler's constant, and we have chosen L = a. The 
corresponding excess free energy follows from Eq. (2.8) (with r 0 = 0): 

/Dr~(r) = - �88 [ln(-~V) + 27 - 1] (2.21) 

As F is increased towards the intermediate coupling regime (F ~ 1), the D H  
approximation becomes rapidly questionable, and a number of theoretical 
schemes have been tried to predict the static properties of the 2d OCP. The 
so-called STLS approximation r (a generalization of the random phase 
approximation) can be solved exactly in this case, and leads to the follow- 
ing expressions for the internal and free energies: (6) 

F 
UsTLS  )-- - 

j} 1 +In[ F 2 ]2/r] /ST~S(r) = 127 

An improvement over STLS theory, due to Totsuji and Ichimaru (TI), (7) 
has been investigated numerically by Bakshi et al. (s) in the intermediate 
coupling regime of the 2d OCP, where its results agree reasonably well with 
the predictions of hypernetted chain (HNC) theory. The H N C  calculations 
have since been extended to strong couplings (9) and will be discussed in 
Section 5. 

The most interesting feature in the intermediate coupling regime is the 
fact that the partition function, and hence the thermodynamics and the 
distribution functions can be calculated exactly for one special value of the 
coupling constant, namely, F = 2. r176 In particular the pair correlation 
function reduces to a Gaussian: 

h r = 2 ( x )  --~ - exp ( - x 2) (2.24) 

This important result provides a stringent test for any approximate theory. 
The results of an expansion of the pair correlation function in powers of 
(1" - 2)01) make it very plausible that the character of h(r) changes from a 
monotonous behavior, typical of weak coupling, to an oscillatory behavior, 
characteristic of short-range order, precisely at F = 2. 

In the strong coupling limit (1">> 1), we expect the OCP thermody- 
namic functions to approach the predictions of the simple "ion disk" (ID) 
(or circular Wigner-Seitz) model; in particular 

UID(F) = fID(1") = -- ~ (2.25) 
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For sufficiently high values of F the 2d OCP is expected to crystallize; this 
point will be investigated in Section 6. 

For any coupling the excess internal energy is bounded below by its 
Debye-Htickel (12) and ion-disk (13) values: 

u(r)  >/ UDH(F ) = - -14 [ln(�89 + 2r] (2.25a) 

u(r)  ~> , ,D( r )=  - }  (2.25b) 

The two lower bounds intersect at F ~ 2.8, and in this intermediate cou- 
pling range neither bound is expected to be useful; in particular at F = 2, 
UDH = --0.2886, UID = --0.375, while the exact result (l~ is u = -0.0721. 
Totsuji (14) proposed a systematic interpolation scheme which provides 
improved lower bounds in the intermediate coupling regime; for F = 2 his 
lower bound is -0.2112. Totsuji's scheme has been further improved by 
Rosenfeld, but no numerical results are available. (15) 

3. MONTE CARLO RESULTS ON A SPHERE 

The principal aim of this paper is to provide reliable Monte Carlo data 
for the 2d OCP over a wide range of couplings (0.5 < F < 200). Since only 
relatively small systems (with N "~ 102 particles) can be simulated, the 
infinite range of the Coulomb potential poses severe truncation problems 
which are well known from the 3d case. Navet and Jamin (16) simulated 
systems with free boundaries (N particles in a disk, with the outer shells 
kept fixed) and an initial triangular lattice configuration; they observed 
melting of the Coulomb crystal as F was lowered below F ~  100, but did 
not discuss the N dependence of their results, which is expected to be severe 
with free boundary conditions. The usual way of eliminating most of the N 
dependence is to use periodic boundary conditions in conjunction with 
Ewald summations of the interactions over the infinite array of periodic 
images. O7) This procedure has been extensively used in 3d, but it is very 
cumbersome and time consuming, and was discarded in the present work. 
Instead we have used two alternative procedures to eliminate the difficulties 
associated with the boundaries. In the first scheme we have eliminated the 
boundaries completely by confining the N particles to the surface of a 
sphere.(18) The second procedure amounts to simulating a periodic system 
of particles interacting by a short-range screened Coulomb potential and 
treating the difference between bare and screened potentials as a perturba- 
tion. (19) The results of the first method are presented in this section, while 
the second procedure is examined in the following section. 

The method of confining N particles to the surface of a sphere has 
been successfully applied in Ref. 18 in a "molecular dynamics" simulation 
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of the 2d classical electron gas, i.e., a system of particles interacting through 
the 3d Coulomb potential ~ l / r .  The  pair distribution functions and 
velocity autocorrelation functions computed on the sphere are indistin- 
guishable from the data obtained from a more conventional plane periodic 
system with Ewald summations. ~2~ 

The procedure of Ref. 18 must be slightly modified to be applicable to 
the 2d OCP. Let R be the radius of the sphere centered in 0; the number 
density is n = N/4~rR 2. The  position of each particle on the sphere is 
determined by two polar angles, or equivalently by a radial unit vector u. 
The mutual distance between two particles i and j is measured along the 
geodesic: 

dij = RLpO. (3.1a) 

with 

~p/j = arc cos(ui �9 uj) (3. lb) 

The solution of Poisson's equation on the sphere leads to the Coulomb 
potential: 

v(tp/j) = - eZln [ tan(tp0./2 ) ] (3.2) 

This form is useless since it is singular for particles on opposite poles 
(~p~j = ~r), a situation which corresponds to infinitely distant particles in the 
planar case. For that reason we replace the interactions along the surface of 
the sphere by interactions along the chords joining the particles on the 
sphere, i.e., we choose 

v(tk~j) = v(ro. ) = - e 2 ln(r~j/ L )  (3.3a) 

where r O. is the length of the chord joining particles i and j :  

rq = 2R sin(~p0./2 ) (3.3b) 

The total potential energy of the N particles and the neutralizing back- 
ground reads 

- e---~2 N In I 2R2 (1 - cos~0) - 1 - In (3.4) 
vu= 2 L--f- T 

It has been shown~22 ) that the thermodynamic limit (N, R ~ oo, n 
constant) of this system and of the corresponding planar system coincide 
for the particular state 17 = 2, where the partition function can be calculated 
exactly in both cases. The N dependence of the excess free energy per 
particle has been shown to be O ( l o g N / N )  for F = 2; ~22) in Appendix A we 
show that the N dependence of the corresponding excess internal energy 
per particle is O ( 1 / N ) .  It is reasonable to assume that the equivalence of 
the two thermodynamic limits, as well as the N dependence of the energies, 
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which has been proved rigorously only for F = 2, will remain true for other 
couplings as well. 

Once the spherical geometry has been adopted,  the s tandard  Metropo-  
lis Monte  Carlo method  proceeds as usual. (23) We computed  the pair 
distribution function, the excess internal energy, and  the excess specific 
heat  at constant  volume for several states in the range 0.5 < F < 200; the 
results are summarized in Table I and in Figs. 1 and  2. The charge 
neutrali ty condit ion (2.5) is trivially satisfied in the simulations so that  they 
automatical ly yield the exact equat ion of state (2.5). The short Monte  Carlo 
run at F = 2 leads to results in excellent agreement  with the exact predic- 
tions Ur= 2 = -0 .0721  and gr=2(x)  given by  Eq. (2.24) (cf. Fig. 1). Because 
static correlations extend further out  with increasing F, we have systemati- 
cally increased the system size f rom N = 104 for F < 40 to N = 256 for 
F >/ 160. At  F = 160 we checked the N dependence  by  running  two 
different sizes (N = 160 and N =  256); no  significant differences were 
detected. 

We  have calculated the static structure factor  f rom the pair distribu- 
tion funct ion by  a generalization of the Fourier  t ransform (2.11) appropri-  
ate for the spherical geometry:  (Is) 

S ( k ) =  1 + 2~rnR2fo~ [ g(RO)- 1]sinOJo(kRO)dO (3.5) 

Examples of calculated structure factors are shown in Figs. 3 and 4, 

Table I. 
I 

F 

Monte Carlo Results for the Two-Dimensional OCP on a Sphere" 

N NC u C~ c Cv, Eq. (3.7) 

0.5 104 5 x 105 + 0.098 
2. 104 1.25 x 105 - 0.1454 0.28 0.280 
5. 104 5 • 105 - 0.2488 0.43 0.437 

10. 104 5 • 105 - 0.2976 0.59 0.557 
20. 104 5 • 105 - 0.3284 0.70 0.688 
40. 104 106 - 0.3469 0.94 0.836 
80. 160 106 ~ 0.3582 1.3 1.009 

100. 160 106 - 0.3611 1.6 1.071 
120. 160 106 - 0.3627 2.75 1.124 
140. 160 8 • 105 - 0.3643 2.15 1.171 
160. 160 5 • 105 - 0.3653 2.9 1.213 
160. 256 1 0  6 - -  0.3653 4.1 1,213 
200. 256 l06 - 0.3667 4,1 1.287 

i i 

aN is the number of particles on the sphere, NC the number of MC configurations 
generated. 
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We have fitted our Monte Carlo energies for F/> 2 by the simple 
functional form (24) 

= A + + r c u(F) (3.6) 

with the following optimal parameters: 

A = - 0.375537, B = 0.439967, C = - 0.104574 
a = 0.74, 3' = 1.7 

Note that A is very close to its "ion-disk" value -0.375, while the 
exponent a lies very close to the value -0 .75 determined from a similar 
analysis of the 3d OCP. ~24'25) The resulting excess free energy f(F) follows 
from Eqs. (3.6) and (2.8) with F o = 2 and f (F0)=  0.04553 l~ The excess 
specific heat derived from Eq. (3.6) is for F ~ 2 

c v  - r2du(r) 
N k  B 

= a B Y  j -~  + r C F  l - r  (3.7) 

The results of Eq. (3.7) are listed in Table I; they differ considerably from 
the direct Monte Carlo estimates based on the energy fluctuations, at high 
values of F; this discrepancy illustrates the well-known difficulty of obtain- 
ing reliable estimates of fluctuations from relatively short Monte Carlo 
runs. The situation appears to be worse in two than in three dimensions (26) 
because fluctuations are larger in lower dimensionalities. 

4. MONTE CARLO RESULTS IN A PLANE 

An alternative scheme, which avoids the cumbersome Ewald summa- 
tions in planar geometry under periodic boundary conditions, is based on a 
separatio n of the Coulomb potential into short-range and long-range 
parts:~9) 

v(r )  = v~(r) + vl(r  ) (4.1) 

vs(r) is chosen such that its magnitude is negligible for separations of the 
order of 1/2, where l is the smallest dimension of the basic cell containing 
the N particles. This means that in a Monte Carlo simulation of a system of 
particles interacting through the short-range potential only, the simplifying 
nearest-neighbor convention can be adopted. The long-range part of the 
potential can be looked upon as a perturbation, the effects of which can be 
treated by a variety of perturbation schemes; Ceperley and Chester ~19) have 
shown that the reference-hypernetted chain (RHNC) method of Lado f27) 
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leads to good results for the 3d OCP. Starting from the exact equation (l) 

g(r) = e x p [ -  flv(r) + h(r) - c(r) + B(r) ] (4.2) 

where B(r) is the bridge function, the RHNC approximation amounts to 
replacing B(r) by the corresponding function for the reference system of 
particles interacting through the potential q(r) .  In other words, given the 
reference system pair distribution function gs(r) (obtained from Monte 
Carlo computations), the coupled equations (2.12) and 

g ( r )  _ exp[ -Bv,(r) + a h ( r )  - Ac(r)] (4.3) g,(r) 

where Ah = h -  hs and Ac = c -  G, are solved numerically by iteration. 
We have adapted Lado's procedure ~:7'19) to the two-dimensional OCP, 
choosing for vs(r ) the screened potential: 

vs(x) = e2Ko( Qx) 
(4.4) 

v/(x) = - e2[lnx + K0( Qx)] 

vs(x ) reduces to the full Coulomb potential (2.1) at short distances and 
decreases exponentially at large distances; Q is adjusted such that v s ~ 0 for 
x > l/2a. 

In Fig. 5 we compare the results of this perturbation scheme to the g(r) 
computed on a sphere at F = 120. The comparison is made for two 
different cutoffs, Q = 1.2 and Q = 0.8. In both cases the RHNC approxi- 
mation is seen to underestimate the correction due to vt(r), but the results 
clearly approach the g(r) calculated on the sphere as Q decreases. 

5. APPROXIMATE THEORIES 

In Section 2 we gave a short list of approximate theories which have 
been applied to the 2d OCP. Table II compares the excess internal energy 
UeX/Ne 2 = u(F) derived from various schemes with our "exact" MC data. 
The HNC energies (9) are seen to be quite close to the Monte Carlo results 
over the whole range of F values which we have explored. However, HNC 
theory underestimates the structure of the pair distribution function, as 
illustrated in Fig. 6 for the case F = 40; this is reminiscent of the situation 
in 3d. (1) On the other hand, although HNC theory automatically satisfies 
the moment sum rules (2.5) and (2.16), it predicts compressibilities on the 
basis of Eq. (2.17) which differ by almost a factor of 2 from the exact result 
(2.9), underlining the familiar lack of thermodynamic consistency of the 
theory. Rosenfeld and Ashcroft (2s) proposed a semiempirical scheme de- 
signed to overcome this inconsistency and improve HNC theory. The latter 
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Table II. Excess Inlernal Energy per ParUcle u = UeX/Ne 2 from Our MC 
CalculaUons and From Various Theories" 

F MC DH ID STLS TI HNC 

0.5 0.098 0.058 -0.375 0.1138 0.1041 0.1036 
2. -0.1454 - 0.2886 - 0.375 - 0.1153 - 0.1485 - 0.1391 
5. -0.2488 - 0.5177 - 0.375 - 0.2045 - 0.2582 - 0.2396 

10. -0.2976 - 0.6910 - 0.375 - 0.2430 - 0.3093 -0 .2879 
20. -0.3284 - 0.8643 - 0.375 - 0.2648 - 0.3395 - 0.3193 
40. -0.3469 - 1.0375 - 0.375 - 0.2764 - 0.3562 - 0.3395 
80. -0.3582 - 1.2108 - 0.375 - 0.2824 - 0.3649 - 0.3523 

1 0 0 .  -0.3611 - i.2666 - 0.375 - 0.2837 - 0.3667 - 0.3554 
120 .  -0.3627 - 1.3122 - 0.375 - 0.2845 - 0.3679 - 0.3576 
140. -0.3643 - 1.3507 - 0.375 - 0.2851 - 0.3688 - 0.3592 
160 .  -0.3653 - 1.3841 - 0.375 - 0.2855 - 0.3694 - 0.3605 
200. -0.3667 - 1.4399 - 0.375 - 0.2861 - 0.3703 - 0.3625 

i i  

aHNC results from Ref. 9; STLS results (Ref. 6) from Eq. (2.22); TI results from Ref. 8 
(note that the values for F>~ 10 are based on an extrapolation of a fit established for 
F~< 10); DH: Debye-Hfickel lower bound (2.25a); ID: ion-disk lower bound (2.25b). 

a m o u n t s  to  s e t t i n g  B(r)= 0 in  Eq.  (4.2)  a n d  s o l v i n g  t he  r e s u l t i n g  c l o s e d  

s y s t e m  of  Eqs .  (4.2)  a n d  (2 .12)  i t e r a t ive ly .  I n  t he  m o d i f i e d  h y p e r n e t t e d  

c h a i n  ( M H N C )  s c h e m e ,  B(r) is a p p r o x i m a t e d  in  Eq .  (4.2)  b y  t he  c o r r e -  

s p o n d i n g  f u n c t i o n  fo r  h a r d - c o r e  p a r t i c l e s  ( h a r d  s p h e r e s  in  3d,  h a r d  d i sks  in  

2d) .  T h e  o n l y  f ree  p a r a m e t e r  in  t he  p r o b l e m  is t h e  e f f e c t i v e  p a c k i n g  

f r a c t i o n  of  t he  r e f e r e n c e  h a r d - c o r e  s y s t e m ;  th i s  p a r a m e t e r  c a n  in  p r i n c i p l e  

b e  a d j u s t e d  so as  to  e n s u r e  t h e r m o d y n a m i c  c o n s i s t e n c y ;  in  p r a c t i c e  t h e  

e f f e c t i v e  p a c k i n g  f r a c t i o n  h a s  b e e n  a d j u s t e d  to  y ie ld  g o o d  a g r e e m e n t  w i t h  

M o n t e  C a r l o  d a t a  in  a n  a p p l i c a t i o n  to  t h e  3d  O C P .  (2s) 

W h i l e  t h e  b r i d g e  f u n c t i o n  B(r) is r e l a t i v e l y  wel l  k n o w n  as a f u n c t i o n  

of  p a c k i n g  f r a c t i o n  fo r  t h e  h a r d - s p h e r e  f lu id ,  m u c h  less i n f o r m a t i o n  is 

a v a i l a b l e  f o r  t h e  t w o - d i m e n s i o n a l  h a r d - d i s k  f lu id .  C o n s e q u e n t l y  we  h a v e  

a d a p t e d  t h e  M H N C  s c h e m e  to  t h e  p r e s e n t  2 d  s i t u a t i o n ,  b y  m a k i n g  u se  of  

t he  e x a c t  r e s u l t  a t  F = 2. ( l l )  F r o m  Eq .  (2 .24)  we  d e r i v e  in  A p p e n d i x  B t h e  

f o l l o w i n g  f o r m  fo r  t h e  d i r e c t  c o r r e l a t i o n  f u n c t i o n  c(x) a n d  fo r  t h e  b r i d g e  

f u n c t i o n  B(x) a t  F --- 2 ( x  = r/a): 

C r = 2 ( x )  = - - 2 " / -  
e - X2 /j 1 j=l J (5.1) 

Br=z(x) = e -x2 + l n [ ( 1  - e-X2)/x z] + c(x) (5 .2)  

B(x) is v e r y  a c c u r a t e l y  r e p r e s e n t e d  b y  t h e  s i m p l e  f u n c t i o n a l  f o r m  

B r = 2 ( x  ) = e-X2[ Bo + B2x z + B4 X4 "1" B6 x6] (5 .3)  
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The coefficients Bzn are obta ined by  identifying the Taylor  expansion of 
Eq. (5.3) with the exact Taylor  expansion of  Br=2(x ), given in Appendix  B: 

B 0 = b 0 = 1 - 2"~ = -0 .1544313  

B 2 = b 0 + b 2 = -0 .00949726  

B4 = �89 + b2 + b4 = 0.00835662 

B 6 = ~b o + �89 2 + b 4 + b 6 = 0.00108723 

We  now make  the assumpt ion that  the shape of the funct ion B ( x )  does not  
change significantly with F, but  that  its ampli tude B ( x  = 0) scales approxi-  
mately as I', a behavior  similar to that  of c(x).  (9~ In  other  words we make  
the ansatz 

Br (x )  = a � 8 9  (5.4) 

where the coefficient a,  which we expect to be of the order of unity, is 
adjusted to achieve the rmodynamic  consistency. In  practice we have solved 
the coupled set of M H N C  equations (4,2) and (2.12) with B ( x )  given by  
Eq. (5.4) for several values of a. The  Hankel  t ransform (2.11) was reduced 
to two successive Fourier  t ransforms by a simple exponential  change of 
variables; (37'3s) the Fourier  t ransforms were evaluated numerical ly by a 
s tandard  fast Fourier  t ransform routine. The  choice a = 0 corresponds to 
the s tandard  H N C  equat ion for which solutions were already available39) 
For  a given value of F, a was varied until the compressibility calculated 
f rom Eq. (2.17) coincided with the exact compressibility (2.9). Results of 
this procedure  are summarized in Table  I I I  and in Fig. 6. The improvement  
over bare H N C  theory is impressive, and  the thermodynamica l ly  consistent 
M H N C  results lie reasonably close to the "exact"  Monte  Carlo data.  The  
value of a which achieves the rmodynamic  consistency increases with I '  bu t  
has a tendency to saturate for very strong couplings. Al though in principle 

Table IlL Results Irom MHNC Scheme a 

F u X~ "xaCt XT a MC 

2 - 0.1443 0.50 0.50 1 - 0.1454 
5 - 0.2476 - 0.25 - 0.25 1.93 - 0.2488 

10 - 0.2964 - 1.50 - 1.51 2.765 - 0.2976 
20 - 0.3275 - 4.00 - 4.01 3.70 - 0.3284 
40 - 0.3465 -9.00 -9.01 4.65 -0.3469 
60 -0.3539 - 14.00 - 14.04 5.17 

"u = UeX/Ne 2 is the excess internal energy per particle; MC is the "exact" Monte 
Carlo value of u; a is the value of the parameter in Eq. (5.4) which yields 
thermodynamic consistency; Xr is the corresponding inverse isothermal compress- 
ibility, which should be compared to its exact value (2.9), X~ xaCt. 
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our procedure could be extended to arbitrarily strong couplings, we have 
limited ourselves to F < 60 since we experienced severe convergence prob- 
lems in the numerical iteration procedure for higher values of F. 

6. CRYSTALLIZATION 

The preliminary Monte Carlo simulations of the 2d OCP with free 
boundaries, by Navet and Jamin, (~6) point towards a stable triangular 
lattice for F~> 100, while melting occurs at lower couplings. We have 
located the fluid-solid phase transition by comparing the free energies of 
both phases. The free energy of the fluid can be calculated by integrating 
the internal energy (3.6) according to Eq. (2.8), with F 0 = 2 and f(F0)= 
0.0455.(1o) For the excess free energy of the solid we have used the result of 
a simple harmonic lattice calculation,(l~ which yields 

f ( r )  = a + ( l n r  + b)/r (6 . l )  

where a - - -0 .37438  is the triangular Coulomb lattice sum and b-- 
-0.262. Anharmonic contributions are expected to be very small for 
F ~> 100 as in the 3d OCP, (29) a consequence of the extreme smoothness of 
the Coulomb potential. When plotted as functions of F, the two free-energy 
curves intersect at F -- 140; the fluid phase has the lower free energy and is 
hence the stable phase, below F--140, while above that value of the 
coupling constant the solid is the stable phase. Note that since the coupling 
is independent of density, the phase transition takes place at constant 
volume. Although there is no volume change on melting, (3~ the phase 
change at the transition temperature is still first order since there is a 
nonvanishing latent heat of fusion l = TAS.  We find As = (Sflui  d - Ssolid) / 

N k  n = 0.40, a value close to that found for a 2d system of particles 
interacting through an inverse twelfth power potential (As = 0.34). (31) Note 
that a simple comparison of the free energies of the fluid and solid phases 
does not rule out the possible existence of an intermediate "hexatic" phase, 
the first-order transition being replaced by a succession of two 
"continuous" (second-order) transitions. (~2) 

In Fig. 7 we compare the fluid structure factors of the 2d OCP and of 
the hard-disk fluid at their respective freezing transitions; the hard-disk 
fluid is known to coexist with its crystal phase at a packing fraction 
~l = rrno2/4 = 0.69 (where o is the disk diameter). (33) Both structure factors 
are plotted versus the reduced wave number q = ak. The  main peaks of the 
two structure factors have a striking resemblance, indicating very similar 
local structures (or short-range order) near the freezing transition despite 
the extreme difference between the pair interactions. This "universality" 
has also been observed in 3d (34) and is the basis of a very simple "freezing 
criterion, ''(35) the two-dimensional version of which can be stated as 
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follows: 

Any classical two-dimensional fluid with central pair interactions freezes when- 
ever the amplitude of the main peak in its static structure factor reaches the 
corresponding hard-disk value S(ko)~ 4.4. 

The subsequent oscillations in S(k)  are much more damped for the OCP 
than for the hard-disk fluid, owing to the softness of the Coulomb repulsion 
compared to the infinite discontinuity of the hard-core repulsion. 

Finally it is worth comparing the two- and three-dimensional cases. 
The 3d OCP crystallizes at F - - f l e2 / a  [with a--(3/4~rn) 1/3] "~ 170, (29,25) a 
figure close to the value 140 of the 2d coupling constant. As might be 
expected, the entropy change on melting is larger (As--~ 0.8) in 3d than in 
2d. 

7. CONCLUSION 

Although it is of limited physical importance, the two-dimensional 
OCP is an interesting statistical mechanics model because of its great 
simplicity and because a number of exact results are known for the static 
properties, which make this model an ideal testing ground for approximate 
theories. Our Monte Carlo simulations yield a detailed picture of the 
thermodynamics and of the pair structure of the fluid phase. There are 
some striking qualitative similarities with the three-dimensional counterpart 
of the model, a situation which appears to hold for the collective dynamical 
behavior as well. (36) Knowledge of the exact compressibility for all cou- 
plings [Eq. (2.9)] allows a direct implementation of the MHNC scheme 
which does not rely on a previous knowledge of "exact" simulation data. 
Although the MHNC results represent a considerable improvement over 
bare HNC theory, they are not entirely satisfactory, indicating a variation 
of the range and possibly the shape of the bridge function with coupling. 

Provided the melting transition is always first order in 2d, the physi- 
cally most interesting result of our work is the indication for the existence 
of a universal "freezing indicator" based on the amplitude of the main peak 
in the fluid structure factor. More simulations of various two-dimensional 
systems near freezing are necessary to confirm the first-order nature of the 
transition and the validity of the freezing criterion (see, e.g., Ref. 31). 
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APPENDIX A 

The excess internal energy for a system of N particles on a sphere of 
radius R is, according to Eq. (3.3) and Ref. 22, 

- UeX IrRZnfo'~ [ gu(O)-l]ln[ ~ s i n  0 ]sinOdO (A.1) UN Ne z 
where n = N/4~rR 2 and gu(O), the pair distribution function for the finite 
system, has been calculated exactly in Ref. 22 for F = 2: 

g ~ r  = [ I+COSO] N-I 
- 2 ( A . 2 )  

Equation (A. 1) can be rewritten as 
uN = u~'~ + u~ 2~ 

with 

u~~ = -4N fo~[ l + c~ ]N-'ln( 2R ) 

_ N l n ( 2  R )u- ,  4 -L--)f-~ 1( l+x - - ~  dx 

= l l n [ ~ N  ]~rnL 2 (A.3) 

To calculate u (2~, we make the change of variable y = (1 + cos 0)/2: 

u~2) = 8N fo'~( 1 + cos 0 ) u - ' l n ( 2  1-c~ s i n O d 0 2  

_ N4 fo l y u - '  In(1 -y)dy (A.4) 

The integral is readily evaluated by expanding the logarithm 

E 1 
4 l(N + l) l=1 

4 = l 

41=1 

l)  
N+ 

u ~ = - ~  7 l=l 

gathering results 

(A.5) 

(A.6) 
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For large N 
N 

, , ( t  z=l ~ 7 - 1 n N = ~ ' + 2 - N + O  ~ 1  

In the thermodynamic limit we recover the exact result of Ref. 11: 

u~ = - �88 2] - ~y 

From Eqs. (A.6)-(A.8) we conclude that 

u N = u~  + O ( 1 / N )  

whereas the N dependence of the excess free energy is (22) 

+ o(' 1 

(A.7) 

(A.8) 

(A.9) 

APPENDIX B 

Using reduced wave numbers q = ak  and distances x = r / a ,  the 
dimensionless Fourier (2.11) transform (FT) of the pair correlation function 
(2.24) at F = 2 can be cast in the form 

l~(q) = e -q2/4 (B.1) 

and the corresponding FT of the direct correlation function results from 
Eq. (2.12): 

e-q2~4 (B.2) 
c (q )  = 1 - e -q2/4 

The q ~ 0 singularity of ~(q) is eliminated by considering the regular part: 

~R(q)  = 4 / q 2  _ ~(q)  (B.3) 

In order to evaluate the FT of ~R(q) we replace q2 by q2 + c2 in (B.2)- 
(B.3); the limit c-~0 will be taken at the end of the calculation: 

[ /1 4 ~ exp . q2 + e2 (B.4) 
~R(q) = lim q2 ~2 - J  

c--)O + j = 1 \ 

We now take the FT of Eq. (B.4) term by term: 

c R ( x )  = lim [2Ko(eX) + 2 ~.exp - j  ~ (B.5) 
L j j = l  

and 

c ( x )  = c R ( x )  + 21nx (B.6) 
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Using the limiting behavior of the Bessel function 

x-~u-lim [ K~ + lnx] = - 7 - l n ( c / 2 )  

the value of c(x) at the origin is easily calculated as 

c(0) = ,~olim [ - 2 7  - 2In 

--- lim { - 2 7  - 2 In c 
~ 0  "2 

= - 2 7  

- ~ l e x p ( - j c 2 ) ]  
j=l J \ -4 

+ In[1 - e - 'V4])  

(B.7) 

(B.8) 
where 7 is Euler's constant. Similarily we derive from Eqs. (B.5)-(B.6): 

c ( x ) = - 2 7 -  ~ l ( e - X V j _ l )  (B.9) 
j = l J  

Equation (B.9) can be Taylor-expanded in even powers of x as 

e(x) = - 2 7  - 
( -  1)" 

n=l ni  ~ (n+l )xZn (B.10) 

where ~(rn) denotes Riemann's function. 
The bridge function at F = 2 follows from Eqs. (4.2), (2.24), and (B.9): 

B(x )=e- : , 2+ ln (  1 - e  -x2 ) -x- ~ + c(x) (B.11) 

which can be Taylor-expanded in even powers of x: 
oo 

B(x) = ~ bznx 2n (B.12) 
n=O 

The coefficients bzn follow immediately from the corresponding coefficients 
in Eq. (B. 10). In particular 

b 0 = 1 - 21, b2 = _ 3 +~(2) = - 3 + ~r  z, etc . . . .  

The bridge function (B. 11) is reasonably well approximated by 

B(x) = bo e-xz (B.13) 

A much more accurate representation is given by Eq. (5.3). 

NOTE ADDED IN PROOF 

Since this work has been submitted for publication we received notice 
of a similar study by de Leeuw and Perram based on molecular dynamics 
simulations with periodic boundary conditions. The results of both calcula- 



A Monte Carlo Study of Two-Dimensional One-Component Plasma 349 

tions are in excellent agreement. Detailed comparison can be found in the 
work of de Leeuw and Perram (to appear in Physica A). 
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